Paper 1M	A1: 3H		
Question	Working	Answer	Notes
1		252	 P1 For start to process eg. radius = 12 ÷ 4 (=3) M1 Method to find area of trapezium or semicircle or circle P1 Process to find area of the shaded region A1 251.7 - 252
2 (a)	550 × 3.5601	1958	$\begin{array}{c} M1 & 550 \times 3.5601 \\ A1 \end{array}$
(b)	$210 \div 7 \times 2 = 30 \times 2$ Or $60 \div 2 = 30$ and $30 \times 7 = 210$	Shown	 M1 For correct method to convert cost in UK to lira or vice versa, using Asif's approximation C1 Shown with correct calculations
(c)		Correct evaluation	C1 For an evaluation e.g. It is a sensible start to the method because he can do the calculations without a calculator and 3.5 lira to the £ is a good approximation
3 (a)	8, 13, 21,	34	B1 cao
(b)	<i>a,b,a+b,a+2b,2a+3b</i>	Shown	 M1 Method to show by adding pairs of successive terms a + 2b,2a + 3b shown C1
(c)	3a + 5b = 29a + b = 73a + 3b = 21b = 4, a = 3	a = 3 b=4	 P1 Process to set up two equations P1 Process to solve equations A1

165

Paper 1M	A1: 3H			
Question	Working	Answer		Notes
4 (a)	Draws LOBF	No + reason	M1	Interpret question eg. draw line of best fit
	Finds ht÷base = $\frac{85 - 20}{0 - 25} = -2.6$		M1	Start to test eg. gradient e.g. $\frac{85-20}{0-25} = -2.6$
			C1	Gradient within range $\pm(2 - 3)$ and 'no'
(b)		The LOBF would	C1	Convincing explanation
		have to be used		
		outside the data		
5		Have a water	P1	Process to find number of litres eg. $180 \div 1000$
		meter	P1	Full process to find cost per day
		(from working with correct figures)	P1	Full process to find total cost of water used per year (accept use of alternative time period for both options)
			P1	Full process with consistent units for total cost of water
			A1	Correct decision from correct figures (88.13154 or correct
				figure for their time period)
6		15, 20, 24	P1	Process to start to find common multiple eg. prime factor
				decomposition of 6 and 8 or list of at least 3 multiples of all
				numbers
			P1	process to find number of packets for at least colour or 120
				identified
			A1	

Paper 1MA	A1: 3H		
Question	Working	Answer	Notes
7 (a)		11A	M1 For a cumulative frequency diagram with at least 5 points plotted correctly at the ends of the intervals
			C1 For correct graph with points joined by curve or straight line segments
			[SC B1 if the shape of the graph is correct and 5 points of their points are not at the ends but consistently within each interval and joined.]
(b)		26.5	B1 25 – 28
(c)	$80 \div 4 \times 3 = 60$ Draw line parallel to mark axis from	36 .5	P1 For process to find number who failed eg $80 \div 4 \times 3 = 60$
	CF = 50		P1 Draw line parallel to mark axis from CF = "60" and read off
			A1 For 35 - 38
8		$6.8 imes 10^{-5}$	B1

Paper 1MA	A1: 3H		
Question	Working	Answer	Notes
9 (a)		(y+6)(y+1)	M1 for $(y \pm 6)(y \pm 1)$ A1
(b)	6x - x > 17 - 4	2.6	M1 for method to isolate terms in x in an inequality or an equation A1 oe eg. $\frac{13}{5}$
(c)		-2, -1, 0, 1, 2, 3	M1 for or $-2.5 < n \le 3$ or -4, -2, 0, 2, 4, 6 or -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 A1
10 (a)		$\frac{x+1}{4}$	M1 start to method eg. $y = 4x - 1$ or $x = \frac{y+1}{4}$
(b)		$\frac{13}{16}$	A1 oe P1 for start to process eg. $f(4k) = 16k - 1$ or $g(2) = \frac{12 + 1}{4}$ A1

Paper 1MA	A1: 3H		
Question	Working	Answer	Notes
11	$x = \frac{-5 \pm \sqrt{(-5)^2 - 4 \times 1 \times 3}}{2} = \frac{5 \pm \sqrt{13}}{2}$	4.30 or 0.697	M1 Substitute into quadratic formula - allow sign errors M1 Evaluate as far as $\frac{5 \pm \sqrt{13}}{2}$
12 (a)	Draws correct Venn diagram	$\frac{44}{50}$	A1 M1 Begin to interpret given information e.g. 3 overlapping labelled ovals with central region correct M1 Extend interpretation of given information e.g. 3 overlapping labelled ovals with at least 5 regions correct M1 Method to communicate given information e.g. 3 overlapping labelled ovals with all regions correct including outside A1 oe
(b)		$\frac{21}{44}$	 P1 For correct process to identify correct regions in Venn diagram and divide by '44' A1
13	DN = MB (given) $\angle NDC = \angle MBC$ (base angles of isosceles triangle) DC = BC (sides of a rhombus are equal) $\therefore \Delta DNC \equiv \Delta BMC$ (SAS)	Proof	C1One correct relevant statementC1All correct relevant statementsC1Correct conclusion with reasons

69

Paper 1MA	A1: 3H		
Question	Working	Answer	Notes
14 (a)	$F(x) = x^{3} + 4x - 1$ F(0) = -1, F(1) = 4	Shown	M1 Method to establish at least one root in $[0,1]e.g x^3 + 4x - 1$ (=0) and F(0)(=-1), F(1) (= 4) oe A1 Since there is a sign change there must be at least one root in 0 < x < 1 (as F is continuous)
(b)	$4x = 1 - x^{3}$ Or $\frac{x^{3}}{4} + x = \frac{1}{4}$	Shown	C1 C1 for at least one correct step and no incorrect ones
(c)	$x_{1} = \frac{1}{4} - \frac{0}{4} = \frac{1}{4}$ $x_{2} = \frac{1}{4} - \frac{\left(\frac{1}{4}\right)^{3}}{4} = \frac{1}{4} - \frac{1}{256}$	0.246(09375) Or <u>63</u> <u>256</u>	B1 $x_1 = \frac{1}{4}$ M1 M1 for $x_2 = \frac{1}{4} - \frac{(\frac{1}{4})^3}{4}$ A1 A1 for 0.246(09375) or $\frac{63}{256}$ oe
15 (a)	Number of men possible is 17 Number of women possible is 26 Each man can be paired with 26 different women 17×26	442	P1 Process to find number of combinations A1
(b)		Ben with reason	C1 Convincing reason e.g. correct calculation is $17 \times 16 \div 2$

Paper 1MA	A1: 3H		
Question	Working	Answer	Notes
16			Let X be centre of base, M be midpoint of AB
	$AC^2 = 20^2 + 20^2 = 800$	1300	P1 process to find AC or AX
	$AX^2 = 10^2 + 10^2 = 200$		P1 process to find VX or VA
	$\sqrt{200} \times \tan 55 = VX$ (= 20.19)		P1 process to find height of sloping face or angle of sloping face.
	$VM^{2} = \sqrt{"20.19"^{2} + 10^{2}} (= 22.54)$ $4 \times \frac{1}{2} \times "22.54" \times 20 + 20^{2}$		P1 process to find surface area of one triangular face.
	$4 \times \frac{1}{2} \times 22.54 \times 20 + 20^{2}$		A1 For 1300 – 1302
17 (a)	1000, 1500, 2250,	Correct Argument	M1 Method to find 1st 3 terms
			C1 Convincing reason e.g. common ratio is 1.5
(b)	$1000 \times 1.5^{\circ} = k \times 1000 \times 1.5^{\circ}$	5.0625	P1 Process to find the value of <i>k</i>
	$k = \frac{1.5^9}{1.5^5}$		A1
(c)		Correct sketches	C1 Draws both exponential curves intersecting on <i>y</i> axis and clearly labelled

Paper 1MA	A1: 3H		
Question	Working	Answer	Notes
18	$\vec{OM} = 3a$ $\vec{AB} = 6b - 6a$ $\vec{MC} = 3a + 2(6b - 6a)$ = 12b - 9a = 3(4b - 3a) $\vec{MN} = kb - 3a$ <i>MNC</i> is a straight line so \vec{MC} is a scalar multiple of \vec{MN}	4	P1 For process to start e.g. $\vec{OM} = 3a$ or $\vec{MA} = 3a$ P1 For process to find $\vec{AB} = (-6b - 6a)$ P1 For process to find $\vec{MC} = (-3a + 2)(-6b - 6a)$ and $\vec{MN} = (-3a)$ P1 For correct process to find k e,g. $3kb - 9a = 12b - 9a$ A1

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

173

7

PMT

174 Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015