Paper 1MA1: 3 H			
Question	Working	Answer	Notes
1		252	P1 For start to process eg. radius $=12 \div 4(=3)$ M1 Method to find area of trapezium or semicircle or circle P1 Process to find area of the shaded region A1 $251.7-252$
2 (a)	550×3.5601	1958	$\begin{array}{ll} \hline \text { M1 } & 550 \times 3.5601 \\ \text { A1 } & \end{array}$
(b)	$\begin{aligned} & 210 \div 7 \times 2=30 \times 2 \\ & \text { Or } \\ & 60 \div 2=30 \text { and } 30 \times 7=210 \end{aligned}$	Shown	M1 For correct method to convert cost in UK to lira or vice versa, using Asif's approximation C1 Shown with correct calculations
(c)		Correct evaluation	C1 For an evaluation e.g. It is a sensible start to the method because he can do the calculations without a calculator and 3.5 lira to the $£$ is a good approximation
3 (a)	8, 13, 21,	34	B1 cao
(b)	$a, b, a+b, a+2 b, 2 a+3 b$	Shown	M1 Method to show by adding pairs of successive terms $a+2 b, 2 a+3 b$ shown $\mathrm{C} 1$
(c)	$\begin{gathered} 3 a+5 b=29 \\ a+b=7 \\ 3 a+3 b=21 \\ b=4, a=3 \end{gathered}$	$\begin{gathered} a=3 \\ b=4 \end{gathered}$	P1 Process to set up two equations P1 Process to solve equations A1

Paper 1MA1: 3H		Answer	Notes
Question	Working		
4 (a)	Draws LOBF Finds ht - base $=\frac{85-20}{0-25}=-2.6$	No + reason	M1 Interpret question eg. draw line of best fit M1 Start to test eg. gradi ent e.g. $\frac{85-20}{0-25}=-2.6$ C1 Gradient within range $\pm(2-3)$ and 'no'
(b)		The LOBF would have to be used outside the data	C1 Convincing explanation
5		Have a water meter (from working with correct figures)	P1 Process to find number of litres eg. $180 \div 1000$ P1 Full process to find cost per day P1 Full process to find total cost of water used per year (accept use of al ternative time period for both options) P1 Full process with consistent units for total cost of water A1 Correct decision from correct figures (88.13154 or correct figure for their time period)
6		15, 20, 24	P1 Process to start to find common multiple eg. primefactor decomposition of 6 and 8 or list of at least 3 multiples of all numbers P1 process to find number of packets for at least col our or 120 identified A1

Paper 1MA1: 3H		$\begin{gathered} \hline \text { Answer } \\ \hline 11 \mathrm{~A} \end{gathered}$	Notes
Question	Working		
7 (a)		11A	M1 For a cumulative frequency di agram with at least 5 points pl otted correctly at the ends of the intervals C1 For correct graph with points joined by curve or strai ght line segments [SC B1 if the shape of the graph is correct and 5 points of their points are not at the ends but consistently within each interval and joined.]
(b)		26.5	B1 25-28
(c)	$80 \div 4 \times 3=60$ Draw line paralled to mark axis from $C F=50$	36.5	P1 For process to find number who failed eg $80 \div 4 \times 3=60$ P1 Draw line parallel to mark axis from CF $=$ " 60 " and read off A1 For 35-38
8		6.8×10^{-5}	B1

Paper 1MA1: 3H		Answer	Notes
Question	Working		
9 (a)	$6 x-x>17-4$	$(y+6)(y+1)$	M1 for $(y \pm 6)(y \pm 1)$
			A1
(b)		2.6	M1 for method to isolate terms in x in an inequality or an equation
(c)		$-2,-1,0,1,2,3$	$\text { A1 oeeg. } \frac{13}{5}$
			$\begin{array}{ll} \text { M1 for } \text { or }-2.5<n \leq 3 \text { or } \\ & -4,-2,0,2,4,6 \text { or }-4,-3,-2,-1,0,1,2,3,4,5,6 \end{array}$
			A1
10 (a)		$\frac{x+1}{4}$	M1 start to method eg. $y=4 x-1$ or $x=\frac{y+1}{4}$
			Al oe
(b)		$\frac{13}{16}$	P1 for start to process eg. $\mathrm{f}(4 k)=16 k-1$ or $\mathrm{g}(2)=\frac{12+1}{4}$
			A1

Paper 1MA1: 3H			Notes
Question	Working	Answer	
11	$\begin{aligned} & x=\frac{--5 \pm \sqrt{(-5)^{2}-4 \times 1 \times 3}}{2}= \\ & \frac{5 \pm \sqrt{13}}{2} \end{aligned}$	4.30 or 0.697	M1 Substitute into quadratic formula - allow sign errors M1 Eval uate as far as $\frac{5 \pm \sqrt{13}}{2}$ A1
12 (a)	Draws correct Venn diagram	$\frac{44}{50}$	M1 Begin to interpret given information e.g. 3 overlapping labelled ovals with central region correct M1 Extend interpretation of given information e.g. 3 overlapping label led ovals with at least 5 regions correct M1 Method to communi cate given information eg. 3 overlapping label led ovals with all regions correct including outside Al oe
(b)		$\frac{21}{44}$	P1 For correct process to identify correct regions in Venn diagram and divide by '44' A1
13	$D N=M B$ (given) $\angle N D C=\angle M B C$ (base angles of isosceles triangle) $D C=B C$ (sides of a rhombus are equal) $\therefore \triangle D N C \equiv \triangle B M C$ (SAS)	Proof	C1 One correct relevant statement C1 All correct relevant statements C1 Correct conclusion with reasons

Paper 1MA1: 3H			
Question	Working	Answer	Notes
14 (a)	$\begin{aligned} & \mathrm{F}(x)=x^{3}+4 x-1 \\ & \mathrm{~F}(0)=-1, \mathrm{~F}(1)=4 \end{aligned}$	Shown	M1 Method to establ ish at least one root in $[0,1]$ eg $x^{3}+4 x-1$ $(=0)$ and $F(0)(=-1), F(1)(=4)$ oe A1 Since there is a sign change there must be at least one root in $0<x<1$ (as F is continuous)
(b)	$\begin{aligned} & 4 x=1-x^{3} \\ & \text { Or } \frac{x^{3}}{4}+x=\frac{1}{4} \end{aligned}$	Shown	C1 C1 for at least one correct step and no incorrect ones
(c)	$\begin{aligned} & x_{1}=\frac{1}{4}-\frac{0}{4}=\frac{1}{4} \\ & x_{2}=\frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{3}}{4}=\frac{1}{4}-\frac{1}{256} \end{aligned}$	$\begin{gathered} 0.246(09375) \\ \text { Or } \\ \frac{63}{256} \end{gathered}$	B1 $x_{1}=\frac{1}{4}$ M1 M1 for $x_{2}=\frac{1}{4}-\frac{\cdot\left(\frac{1}{4}\right)^{13}}{4}$ A1 A1 for $0.246(09375)$ or $\frac{63}{256}$ oe
15 (a)	Number of men possible is 17 Number of women possible is 26 Each man can be pai red with 26 different women 17×26	442	P1 Process to find number of combinations A1
(b)		Ben with reason	C1 Convincing reason eg. correct cal culation is $17 \times 16 \div 2$

Paper 1MA1: 3H			
Question	Working	Answer	Notes
16	$\begin{aligned} & A C^{2}=20^{2}+20^{2}=800 \\ & A X^{2}=10^{2}+10^{2}=200 \\ & \sqrt{200} \times \tan 55=V X \quad(=20.19 \ldots) \\ & V M^{2}=\sqrt{" 20.19^{\prime 2}+10^{2}} \quad(=22.54 \ldots) \\ & 4 \times \frac{1}{2} \times 22.54 " \times 20+20^{2} \end{aligned}$	1300	Let X be centre of base, M be midpoint of $A B$ P1 process to find $A C$ or $A X$ P1 process to find $V X$ or $V A$ P1 process to find height of sloping face or angle of sloping face. P1 process to find surface area of one triangular face A1 For 1300-1302
17 (a)	1000, 1500, 2250,	Correct Argument	M1 Method to find 1st 3 terms C1 Convincing reason eg. common ratio is 1.5
(b)	$\begin{aligned} & 1000 \times 1.5^{9}=k \times 1000 \times 1.5^{5} \\ & k=\frac{1.5^{9}}{1.5^{5}} \end{aligned}$	5.0625	P1 Process to find the value of k A1
(c)		Correct sketches	C1 Draws both exponential curves intersecting on y axis and clearly labelled

Paper 1MA1: 3H				
Question	Working	Answer	Notes	
18	$\begin{aligned} & \overrightarrow{O M}=3 \mathbf{a} \\ & \begin{aligned} \overrightarrow{A B} & =6 \mathbf{b}-6 \mathbf{a} \\ \overrightarrow{M C} & =3 \mathbf{a}+2(6 \mathbf{b}-6 \mathbf{a}) \\ & =12 \mathbf{b}-9 \mathbf{a} \\ & =3(4 \mathbf{b}-3 \mathbf{a}) \end{aligned} \\ & \overrightarrow{M N}=k \mathbf{b}-3 \mathbf{a} \end{aligned}$	4	P1	For process to start e.g. $\overrightarrow{O M}=3 \mathrm{a}$ or $\vec{M} A=\mathbf{3 a}$
			P1	For process to find $\overrightarrow{A B}$ ($=6 \mathbf{b}-6 \mathbf{a}$)
			P1	For process to find $\overrightarrow{M C} \quad(=3 \mathbf{a}+2(6 \mathbf{b}-6 \mathbf{a})$ and $\overrightarrow{M N}(=k \mathbf{b}-3 \mathbf{a})$
			P1	For correct process to find k e,g. $3 k \mathbf{b}-9 \mathbf{a}=12 \mathbf{b - 9 a}$
	$M N C$ is a straight line so $\overrightarrow{M C}$ is a scal ar multiple of $\overrightarrow{M N}$		A1	

13

17

